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Application of the Gibbs-Duhem Equation to Ternary and Multicomponent Systems 

BY L. S. DARKEN 

The literature contains very few data on the 
thermodynamics of isotherms of ternary or multi-
component solutions. Likewise, little is to be 
found on the theoretical treatment of such solu
tions, except for regions limited to the vicinity of a 
pure solvent. This paper deals with an iso
thermal isobaric section of a ternary system in 
which section there is but one phase region— 
that of the single phase solution. With the aid 
of no extra-thermodynamic assumption other 
than the assumption of Henry's law as a limiting 
law at infinite dilution, it is demonstrated that 
it is possible to calculate the molal free energy, 
hence the partial molal free energies of the other 
two components, from an experimental knowledge 
of the partial molal free energy of one component 
at all compositions. The same method may 
readily be extended to systems of more than three 
components and to functions other than the free 
energy. 

As a preliminary step let us consider the ap
plicability to a ternary system of the well known 
relation, Gt = G + (1 - Ni)(dG/dNi), valid 
under isothermal isobaric conditions for binary 
solutions; this relation follows from the gener
alized Gibbs-Duhem equation. Here, G repre
sents the molal value of any extensive property, 
Oi the corresponding partial molal quantity for 
the ith. component and N, the mole fraction of the 
ith component. Since any solution, no matter 
how many components it contains, may be re
garded as binary if we arbitrarily limit composi
tion changes to those corresponding to addition or 
removal of only one component, it follows that the 
foregoing equation applies to a multicomponent 
solution, provided that the derivative dG/dNi 
be interpreted as a partial derivative, all ratios 
of mole fractions except those involving Ni being 
constant. For a ternary system, focusing our 
attention upon component 2 which is here re
garded as the component whose partial molal 
quantity is experimentally known, we may then 
write1 

(1) A more detailed derivation of Eq. 1 for a ternary system is: 
the relation 

G = N1G1 + N2G2 + NZ~G» 
is differentiated partially with respect to M at constant Ni/Ni, 
giving 
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By virtue of the Gibbs-Duhem equation (NidGi + NidG2 -\-N3dG* 
= Q) the sum of the first, third and fifth terms is zero, whence 
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By rearranging terms and dividing by (1 
this expression may also be written 
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Integration from N2 = 1 to N2 gives 
G 
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the integration and limit to be taken at constant 
value of N1ZN3.

1* 
Let us now apply this relation to the excess 

molal free energy of mixing F*s which is defined 
as Fxs = F — F* where Fi is the ideal contribu
tion to the free energy — F2

XS = F^ — F2' = .RTInY2 
where y2 is the activity coefficient of component 2. 
Equation 3 now becomes 

F" - (1 - N2) lim ( i - ^ r ) -
AV* 1 \ l - N2) 

(i - Ay J 1 
F2" 

(1 - N2)' 
dA2 (3a) 

it being understood that the integration and limit 
are to be carried out at constant Ax/A3; in the 
usual triangular method of representing composi
tion, the integral is taken along a straight line 
connecting the point of interest to the corner 
corresponding to pure component 2, as in Fig. 1. 

The limit in Eq. 3a is an indeterminate form 
which may be evaluated by aid of l'Hopital's 
theorem whereby 

/.Va 

which by Eq. 1 becomes 
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and by virtue of the relations F*s = N1F1" + 
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Rearrangement of terms gives Eq. 1. 
(Ia) Integration of Eq. 2 from A2 = 0 to Ni leads to 

Ni 

G2-G 

1 - N2 

[CH,_, + £' r r ^ ) 2 dAr2] (1 - AT2) 

thus providing a method of determining G for a ternary composition 
from a knowledge of (1) Gz for ternary compositions of constant 
Ni/Ns and (2) G for the binary system with the same ratio Ni/Nt. 
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IS1 (r^k)-Hm 

Ff + 
^ N1 

Ff + I + M 
(4) 

If the standard state be so chosen for each com
ponent that Fixs = 0 (i.e., so that *a = 1) at 
N2 = 1 then the above limit is zero, and Eq. 3a 
becomes 

J * Nz P Xe 

t (T=TW-dJV ' (5) 

a - prime being used to indicate this particular 
choice of standard state. If, however, the stand
ard state be chosen as pure component in each 
case (i.e., F , " = 0 at N{ = 1) then the limit 
becomes 
hm I = rr I = 

N^1 \ 1 - N2) 

1 + 
N, 
N1 

(Ff)N,.! + 
I + M 

+ 2V. 

(Ff)X2-I (4a) 

All further treatment in this paper is based on 
this second choice of standard state. Eq. 3a 
becomes, on noting again that 

M 
N2 

I + M 
+ N1 

and N, 
1 - N2 

1 + 
N1 

N, 

(5a) 

F" = (1 - N2) J / \ ^ diV2 + 
N1 [Ff]N2.!+ N3 [FfU2-I 

The two constants [FX
XS]N,= I and [F»xs]Nl-i 

are determinable from measurements on the two 
binary systems 1-2 and 2-3, respectively. If 

Fig. 1.—Illustration on triangular coordinates of com
positions to be investigated in ternary system for proposed 
method of obtaining F11 for binary system 1-3. 

F2*
1 is regarded as the experimentally determined 

quantity, these two constants may be expressed 
in terms thereof by application of the Gibbs-
Duhem equation to each of these two binary 
systems. 

[̂ W1 --[J* ^ZL3. w] 

IFfU2.! = -[J1
0 - ^ j - , d%] 

Ni-O 

JV1-O 

These two expressions may also be obtained 
from Eq. 5a by setting N3 = 0 and N1 = 0 re
spectively, .ZV2 being set zero in both cases. Sub
stituting for these two constants in Eq. 5a 

J Ni/ N> 

-a' Ff 
(1 - N2) * 

Ns 

dN2~] 
J Wi-O 

(6) 

This is the final equation expressing the excess 
molal free energy of a ternary solution in terms 
of the partial molal excess free energy of only 
one component. As noted previously, the stand
ard state for each component is chosen as that 
pure component. I t will be noted that in general 
the integrations may be performed, and Fxs 

thus evaluated, only if there are no miscibility 
gaps intersecting the lines along which the 
integrations are to be performed. 

If, for a particular system, Fxs be so deter
mined at all compositions then Fixs and Fs

xs may 
be determined, if desired, by the usual methods. 
For example Eq. 2 may be put in the following 
forms 

a-.a-wl^^^ 

Ff = (i - Nzy 
1 - Ar; 

<>Nz /N1/N2 

Thus Fxs, Fixs and F3
XS may be evaluated at all 

compositions provided F2"
5 is known at all com

positions. 
A Method of Determining the Free Energy of 

Binary Systems.—Let us suppose that it is de
sired to determine experimentally the excess 
free energy of mixing of a binary solution (com
ponents designated 1 and 3) but that the usual 
methods do not seem practical for this particular 
case. For example, the vapor pressures may be 
too small for application of the vapor pressure 
method. However, it would frequently be possi
ble to find another substance (designated com
ponent 2) which is volatile and is miscible in all 
proportions with components 1 and 3 and all 
mixtures thereof. In such a case it would be 
relatively easy to determine the vapor pressure of 
component 2 and hence F2

XS in the ternary system. 
Similarly, it may be difficult to apply the e. m. f. 
method to a series of binary liquid metallic solu
tions; but perhaps another metal miscible with 
the other two, could be found. If, further, this 
other metal behaves reversibly (usually by virtue 
of lower electronegativity) in the cell, then its 
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excess partial molal free energy may readily be 
determined. 

In such cases Equation (6) may be applied to 
determine Fxs for the binary system. The binary 
system 1-3 is obviously a limiting case of the 
ternary system 1-2-3 in which N2 = 0. Setting 
N2 = 0 in Eq. 6 we find 

^binary .ystem 1-3) = [ J 1 (1 - Ni)1 ^ J A ' . / . V , ~~ 

^[Ji°a^bd^L-o (7) 

Thus the free energy of formation of the 
binary solution 1-3, may be obtained by this 
indirect method. Although many more experi
mental measurements are required, this indirect 
method may be of occasional use in cases such as 
that discussed above in which direct measure
ments for the binary system are impractical. 

The general scheme of the procedure is illus
trated schematically in Figs. 1, 2 and 3. Figure 1 
shows the compositions of the solutions along lines 
of constant ratio N1ZN3. Figure 2 illustrates 
schematically the plot of the experimental data. 
The total area under each curve is then evaluated 
and plotted (with reversed sign) as indicated by 
Fig. 3 (top). Fxs at each value of Â 3 for the 
binary system 1-3 then corresponds to the de
parture of the corresponding point from the 
straight line connecting the termini of the curve; 
these values of Fxs are indicated by the arrows in 
the top portion of Fig. 3 and are plotted at the 
bottom thereof. Obvious modification of this 
procedure is used if it is desired to obtain F" 
for ternary compositions. 

I t seems worth while at this point to call atten
tion to the fact that Equation 7 lends thermo
dynamic support to the chemists intuition that it 
is possible to gain some knowledge of the chem
istry of a series of binary solutions by investigating 
the solubility of another substance slightly soluble 
therein. For example, the solubility of sulfur 
dioxide gas at 1 atm., in sulfuric acid-water mix
tures is a minimum at a composition (86% 
sulfuric acid) corresponding approximately to 
the one to one ratio of sulfuric acid to water 
(84.5% sulfuric acid). This behavior is commonly 
interpreted as evidence of the existence of a 
hydrate of sulfuric acid in aqueous solution. 
Although Eq. 7 cannot be fully applied with 
this limited amount of information, it would not 
seem unreasonable to infer that such minimum 
solubility would be found at higher concentra
tions of sulfur dioxide also, and hence that the first 
integral in Eq. 7 would have a minimum value at 
or near this ratio of sulfuric acid to water. Grant
ing this inference, it follows then from Eq. 7 
that the excess free energy Fxs of the binary system 
H2SO4-H2O has a minimum value at this ratio. 
Thus in a sense, the intuitive reasoning is justified 

0 0.5 1 
N2. 

F 2 " 
Fig. 2.—Schematic representation of —— as func-

[ 1 — A/o) 2 

tions of N2 along the lines of Fig. 1. 

0 0.5 1 
Ns (binary system 1-3). 

Fig. 3.—Top—the integrals of the curves in Fig. 2 
plotted as a function of N3 for the binary system 1-3. 
Bottom—replot of the distances indicated by arrows 
above, which are values of Fzs for the binary system 1-3. 

—although of course thermodynamics gives no 
direct support to the idea of hydration or com
pound formation in solution. 

One further example will be given. Liang, Bever 
and Floe lb have measured the solubility of hydro
gen gas at 1 atm. pressure in molten iron-silicon 
alloys. The logarithm of the solubility (= F2

XS/ 
2.303RT + Const) is shown in Fig. 4. This is per
haps a rather unexpected type of curve exhibiting 
a near discontinuity in slope near the one to one 
atom ratio. If we may be permitted to infer that 
F2

XS would behave similarly over part of the ternary 
system, then the first integral of Eq. 7, and hence 
the excess free energy of the binary system iron-
silicon, would exhibit a similar near-discontinuity 
in slope near the one to one ratio of iron to silicon. 
The relation may be found more explicitly if we 
make, for the purpose of illustration, the crude 

(lb) H. Liang, M. B. Bever and C. F. Floe, Trans. Am. Inst. Min 
Met. Engrs., 167, 395 (1946). 
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approximation that Ff5Z(I — ./V2)
2 is a function 

of the ratio N1JNz only, hence from Eq. 7 

-^Fe-Si 8y»tem) = " " *2(ffa-0) + -^l A Wi-I) + JV3A(Nl-I) 

Denoting the low solubility of H2 as Â 2
0 this be

comes (approximately) 

^Fe-Si System) = RT [ltl W - N1 In J V 1 W l ) ~ 

JV, In J V s W i ) ] 

This gives an explicit relation for the excess free 
energy of the binary system, although a very 
crude approximation is involved. I t is thus seen 
from this relation that on the basis of this crude 
assumption the excess free energy of iron-silicon 
solutions is proportional to the lengths of the 
arrows in Fig. 4. Crude as this may be it in
dicates a rather large departure from ideality in 
the system iron-silicon (Fxs = —7000 cal. per 
gram atom); a strong possibility of a rather un
usual behavior in this binary system is indicated 
by the near discontinuity in slope. 

X 1 P2' 
1O (1 ~ N1)" 

diVj = -

0.2 0.4 0.6 0.8 1.0 
iVsi (in Fe). 

Fig. 4.—Solubility of hydrogen in molten iron-silicon 
alloys at 1650 ° (data of Liang, Bever and Floe). Solubility 
is expressed as cc. NTP of H2 per gram atom of alloy. 

Length of arrows indicates crude approximation of 

for binary system Fe-Si. 
2.303.Rr 

It is apparent that the method of this section 
may be extended to find G for an w-component 
solution by the introduction of an additional 
miscible component and by measurement of G 
therefore. 

Limitations of the Method.—As illustrated in 
Fig. 2, Eqs. 6 and 7 call for the integration of 
the function .F2

1V(I ~ N2)
2 over the entire range 

of N2 from zero to one._ If the proposed method 
is to be fruitful, then Ff/(I - N2)

2 must be a 
reasonably well-behaved function. Certainly it 
would be disastrous if the integrals thereof ap
proached infinite value. I t may easily be shown 
that the integral may be written 

N1 

^ N3 

[(JV*)* 

(JV1W*] + [(JV1Wi - (JV')w,-o] 

Barring dissociation, all the partial molal excess 
free energies appearing on the right side are non-
infinite2 (by virtue of Henry's law) and hence 
it follows that the integral is finite. 

The utility of Eqs. 6 and 7 would be seriously 
impaired if the function F2

XS/(1 — N2)
2 ever 

approaches infinite value even though its integral 
does not. The behavior of this function must 
therefore be investigated, particularly as N2 ap
proaches one. Modern solution theory and 
,experiment3 are in accord that for non-electrolytes, 
NiC)FfZbN2 is proportional to TV1 (or to 1 - N2 
under the condition considered) at sufficiently 
low concentration. Using a similar expression for 
N3dFf/bN2, it is readily found by aid of the 
Gibbs-Duhem Equation and d'Hopital's theorem 

Ff 
that lim T ^r-, is not infinite. This matter 

Nt-*0 ( 1 — N2)
2 

as well as the further complications involved in 
the treatment of solutions of electrolytes is dis
cussed by Scatchard and Prentiss.4 

Attention should be called to the fact that al
though, for non-electrolytes, the function / = 
Ff/(I — TV2)

2 is probably finite at all composi
tions, the precise evaluation thereof in the vicinity 
of N2 = 1 requires a very high degree of experi
mental accuracy. Departures from ideality, and 
hence Ff and also (1 — N2)

2, are very small 
in this vicinity. For the binary metallic systems 
on which data are available in the literature there 
is no indication of any anomalous behavior of the 
function, / , in the vincity of N2 = 1. Hence it 
seems reasonable to suppose that the best con
struction of the curve (/against N2) in the vicinity 
of N2 = 1 is by smooth extension from the region 
in which the experimental precision is good, 
i.e., that discordant points near N2 = 1 should be 
disregarded in the construction of the curve 
(Fig. 2). I t will be noticed that to obtain equal 
precision in / over the range_ of experimental 
observations, the precision in Ff must increase 
markedly with increase in N2; for example the 
precision at Â 2 = 0.9 should be 100 times as great 
as in the vicinity of A2 = 0. Vapor pressure 
and e. m. f. methods tend to give greater pre
cision at high values of A2 but not this much 
greater. However, attention should be called 

(2) If dissociation occurs, the difficulty of an infinite integral may 
be avoided by choosing the products of dissociation as components. 
In metallic systems the chemical elements are chosen as components 
and this possibility is avoided. 

(3) M. Margules, Sitzber. d. Wiert Akad., [2] 104, 1243 (1895); 
A. W. Porter, Trans. Far. SoC, 16, 236 (1921); George Scatchard, 
Chem. Rev., 8, 321 (1931); J. H. Hildebrand, "Solubility of Non-
Electrolytes," Reinhold Publ. Corp., New York, N. Y., 1936; 
Fowler and Guggenheim, "Statistical Thermodynamics," Cambridge 
University Press, 1939; W. J. C. Orr, Trans. Far. Soc, 40, 320 (1944). 

(4) George Scatchard and S. S. Prentiss, T H I S JOURNAL, 56, 1486 
and 2314 (1934). 
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to the fact that this demand for greater precision 
in the vicinity of JV2 = 1 is inherent in any method 
utilizing the Gibbs-Duhem equation. Fre
quently, it is concealed by the method of treat
ment. In fact, it is common in experimental in
vestigations to neglect this region entirely, upon 
the assumption that Raoult's law is rapidly 
approached and measurement is unnecessary. 
Although it is true that Raoult's law is here ap
proached rapidly, nevertheless it is the small 
departures therefrom which are important in 
determining the partial molal free energy of the 
other constituent (s) by any method involving 
the Gibbs-Duhem equation. The present method 
makes clear this requirement, whereas some other 
methods of applying the Gibbs-Duhem equation 
to binary systems do not; this latter fact has con
tributed to a tendency on the part of some 
experimental investigators to ignore compositions 
in the vicinity of the pure component whose par
tial pressure or activity is being measured. 

Application to Other Thermodynamic Func
tions.—The same method developed here may be 
applied to the molal values of other extensive 
thermodynamic functions which have zero value 
at JV2 = 1; such functions are the enthalpy, 
energy and volume of mixing, and the excess 
entropy. This is apparent from the consideration 
that equation (3) and the evaluation of the limit 
leading to Eq. 4a are perfectly general. From 
Eq. 4a it is seen that the general form of the limit 
in Eq. 3 is 

Hm — 
A T i - * 1 1 AT

2 1 + 
JV; 

JV1 

[Gi + JVi 

JV3 

[G3 ].V: 

which is never infinite unless [G ijAr2=i o r 

[Gs]Ar, = i is, providing as mentioned above that 
G = 0 at JV2 = 0. Hence it is apparent that the 
method is applicable in principle to any molal 
quantity which has the value zero at JV2 = 0 
providing that none of the corresponding partial 
molal quantities become infinite at infinite dilu
tion and providing that G2 approaches zero as 
JV2 approaches unity. The general equation is 
similar to Eq. 6. 

G = (1 - N 

JV1 

h) [Jl 
Ni n. 

(1 - JV2)2 

U i (T ĴV2T
2 d*'JL, 

ChV2] 
JjVl/A'3 

(1 - JV2) 

A' ^ro^W^Lo ^ 
It will be noted that for the functions 

Ri - H\ S2" ...., F2 -
(1 - JV2)2 (1 - JV2)-

and 
(1 - JV2)2 

essentially the same considerations as to finite 
values apply as for F2

XS/(1 — JV2)
2 this by virtue 

of the thermodynamic relations between H, S, V 
and F. For example, since 

1(1-JV2)V 7 J I = ^ r S , it is seen that if 

p xa 
l i m Ti i?T5 is finite at all temperatures, then 

Tt — TT 

in general6 the derivative and hence M^1 '_ ', 

is finite. Similarly, since 
\ •, r fi" i / - Sr 

1 (i - N2)' 
and 

I P.Comp. 

Id L(I - AJ2)
2J 

SP ",Comp. (1 - NiY 

it follows in general that the limit of JS2
1V(I — 

JV2)
2 and of (F2 - F°)/(l - JV2) as JV2-* 1 is also 

finite. 
Extension to Multicomponent Solutions.— 

The same method is readily extended to systems 
of more than three components. Equations 1 
and 2 hold in identically the same form except 
that the partial derivatives are to be interpreted 
as partials at constant ratio of all mole fractions 
except for ratios involving JV2. Equation 3 is 
then valid under the condition that the integra
tion and limit are to be taken in this same way. 
The final equation (6) or (6a) follows in just the 
same way and with the same limitation as for a 
ternary system. Thus the excess free energy, or 
other extensive property meeting the require
ments discussed in the preceding section, at all 
compositions in a multicomponent solution may be 
derived from a precise knowledge of the corre
sponding partial molal quantity of any one com
ponent at all compositions. 

Acknowledgment.—The author wishes to ac
knowledge the benefit of discussion with George 
Scatchard (Mass. Inst, of Tech.) who kindly re
viewed the fundamental idea of this contribution 
and offered suggestions for the improvement of 
the presentation. 

Summary 
A general method has been developed for deter

mining a molal quantity and the other corre
sponding partial molal quantities for ternary and 
multicomponent solutions under isothermal iso-
baric conditions, from an experimental knowledge 
of one of the corresponding partial molal quanti
ties, but at all compositions. The general relation 
is 

C = (1 - JV; 

[fir^ 

A7= Tz. 
n A M 2 diV2 

(1 - AJ2)
2 JiVi1W., 

2Vi' Ni 

AV 
ANi 

1N1 2V. „ 0 

2V1' m " ' 

(5) Exceptions may conceivably exist at particular temperatures 
Ft" 

at which the plot of lim n _** \2 vs. 1/T may exibit infinite slope. 
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N Lf(Ay^] 
N,' Ni ' 

The only assumptions involved are: (1) that G 
is the molal value of an extensive function, and 
hence that the extended Gibbs-Duhem equation 
may be applied; G must be so chosen as to have 
zero value for each pure component; (2) that 
Henry's law is valid as a limiting law for all com
ponents at infinite dilution. The restrictions 
on the usefulness of the relation are discussed; 
departures from Henry's law at small finite con

centrations must be such that Gt is proportional 
to (1 — ./V2)

2 in the near vicinity of iV2 = 1, in 
order that the function to be integrated in the 
above equation be always finite. 

It is shown that the above equation may be 
used as the basis of a new method for determining 
G for an w-component solution; this method in
volves the introduction of another miscible 
component and the experimental determination 
of G therefor in the new system of n + 1 com
ponents. 
KEARNY, N. J. RECEIVED J U N E 22, 1949 

[CONTRIBUTION FROM THE PACIFIC EXPERIMENT STATION, BUREAU OF M I N E S , UNITED STATES DEPARTMBNT OF THE 
INTERIOR] 

Heat Capacities at Low Temperatures and Entropies of Zirconium, Zirconium Nitride, 
and Zirconium Tetrachloride 

BY S. S. TODD1 

A recent paper of Coughlin and King2 presents 
high-temperature heat-content data for zirconium 
metal and its oxide (ZrO2), nitride (ZrN), silicate 
(ZrSi04), and tetrachloride (ZrCl4). The present 
paper gives low-temperature heat-capacity values 
and entropies at 298.16° K. for the metal, nitride, 
and tetrachloride, thus making possible free-
energy calculations for the last two substances. 
Low-temperature heat-capacity and entropy 
values for the oxide and silicate have been re
ported by Kelley.3'4 

Heat Capacities 
The materials used in this investigation were 

identical with those described by Coughlin and 
King,2 and repetition of the methods of prepara
tion and tests of purity appears unnecessary. 
Correction was made for the hafnium contents, 
based upon the assumption that corresponding 
zirconium and hafnium compounds have the 
same molal heat capacity. This correction in
creased the measured heat-capacity values by the 
following amounts: Zr, 1.0%; ZrN, 0.7%; 
and ZrCU, 0.35%. 

The measurements were made with previously 
described apparatus.6 The results, expressed in 
thermochemical calories6 (1 cal. = 4.1833 int. 
joules), are listed in Table I and plotted against 

(1) Pacific Experiment Station, U. S. Bureau of Mines. Article 
not copyrighted. 

(2) J. P. Coughlin and E. G. King, THIS JOURNAL, 72, 2262 
(1950). 

(3) K. K. Kelley, (a) ibid., 63, 2750 (1941); (b) Ind. Eng. Chem., 
36, 377 (1944). 

(4) In this connection, it appears worth-while to record that 
Kelley's entropy values should be increased slightly to account for 
the now known hafnium contents of the materials. Recalculation 
gives 5298-ie = 12.12 * 0.08 for Zr02 (monoclinic) and £°9S.is = 
20.2 * 0.2 for ZrSiO1 (zircon). 

(5) K. K. Kelley, B. F. Naylor, and C. H. Shomate, U. S. Bur. 
Mines Tech. Paper, 686 (1946). 

(6) E. F. Mueller and F. D. Rossini, Am. J. Phys., 12, 1 (1944). 

T, 0K. 

53.2 
56.8 
60.8 
65.6 
70.6 
75.4 
79.8 
84.1 
94.9 

104.5 

53.1 
57.1 
62.0 
67.5 
72.7 
77.6 
80.5 
85.3 
95.2 

104.8 

52.6 
55.9 
60.0 
64.9 
69.3 
74.0 
80.0 
83.9 
94.8 

104.6 

TABLE I 

MOLAL H E A T CAPACITIES 

CP, 
cal./deg. 

2.418 
2.640 
2.873 
3.134 
3.383 
3.609 
3.789 
3.945 
4.296 
4.562 

: 
1.198 
1.426 
1.699 
2.018 
2.308 
2.574 
2.731 
2.978 
3.477 
3.946 

T, 0K. 

Zr (mo! 

115.0 
124.1 
136.1 
146.2 
156.0 
166.1 
176.0 
186.2 
196.1 
206.3 

Cp, 
cal./deg. T, "K. 

1. wt., 91.22) 

4.796 
4.971 
5.172 
5.293 
5.409 
5.510 
5.606 
5.672 
5.737 
5.802 

216.4 
226.2 
236.4 
246.0 
256.7 
266.4 
276.4 
286.6 
296.8 

(298.16) 

ZrN (mol. wt., 105.23) 

114.9 
124.8 
136.2 
145.9 
155.9 
166.2 
176.7 
186.2 
196.4 
206.7 

4.416 
4.867 
5.358 
5.747 
6.137 
6.517 
6.876 
7.177 
7.495 
7.784 

216.6 
226.5 
236.5 
246.0 
256.4 
266.4 
276.6 
286.8 
296.7 

(298.16) 

ZrCl4 (mol. wt., 233.05) 

11.24 
11.86 
12.63 
13.53 
14.30 
15.06 
15.98 
16.53 
17.96 
19.15 

114.6 
124.7 
136.1 
146.3 
156.2 
166.3 
176.3 
186.4 
196.4 
206.7 

20.24 
21.21 
22.23 
22.97 
23.66 
24.25 
24.87 
25.33 
25.75 
26.15 

216.6 
226.7 
236.4 
246.3 
256.5 
266.4 
276.5 
286.8 
296.7 

(298.16) 

cF, 
cal./deg. 

5.861 
5.905 
5.948 
5.981 
6.042 
6.083 
6.127 
6.149 
6.168 

(6.186) 

8.048 
8.287 
8.516 
8.714 
8.954 
9.127 
9.325 
9.482 
9.613 

(9.655) 

26.53 
26.79 
27.11 
27.37 
27.66 
27.94 
28.17 
28.37 
28.63 

(28.65) 


